
38 THE D E T E R M I N A T I O N  OF A C C U R A T E  U N I T - C E L L  D I M E N S I O N S  

reaching a maximum fo r / z=  - 4 5  ° and sinZ0=0.86 of 
only 0.0015. Since this is in every respect an extreme 
case, errors due to crystal missetting may be safely 
ignored. This relative insensitivity to the value of /z  
also explains why the program converges rapidly in a. 

The method is very insensitive to the camera radius. 
A change of 1% in the value used for the aenigmatite 
data produced only a change of 0.03% in the calcu- 
lated unit-cell dimensions. 

effective check that a set of upper-layer Weissenberg 
photographs have been consistently indexed, since an 
incorrectly indexed reflexion is immediately apparent 
on comparing the sin20 values from the c~ doublet 
separations with those calculated from the analytical 
constants. 

We are very grateful to Dr C. H. Kelsey and Dr D. 
McKie for their carefully measured data. 

Conclusions 

This extension of Main & Woolfson's technique has 
the advantages that only data about a single axis are 
required, and that (even when data from several axes 
are available) more information can be incorporated. 
It can also be recommended as a quick and highly 
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Diffuse Double Diffraction of X-Rays 
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A Monte Carlo method has been used to evaluate the magnitude of twice scattered X-rays in diffraction 
experiments. The quantitative effects of variations in the primary scattering distribution, the absorption 
coefficient, the scattering power of the atoms, the X-ray wavelength, the specimen thickness, the mono- 
chromator and slit configuration and of polarization corrections have been derived. These factors 
have various influences on the magnitude and angular distribution of the twice scattered radiation but 
I2(0) is of the order of 0.0025 a2//~p W (electron units per atom) for all the elements and conditions 
considered, where a2 is the square of the primary diffraction cross-section, Ft is the mass absorption 
coefficient and W is the atomic weight. 

The experimental measurements of diffusely scattered 
radiation include contributions due to multiply scat- 
tered radiation. Often, this contribution must be ac- 
counted for in order to analyse the coherently diffracted 
component. Chandrasekhar (1950) has derived certain 
expressions for the multiple scattering of radiation but 
these are not directly applicable to most diffraction 
experiments. Vineyard (1954) has obtained expressions 
for the doubly scattered component of neutron radia- 
tion, with isotropic primary scattering [lx(0)] and two 
common diffraction geometries. Warren (1959a) has 
obtained numerical values for the double scattering of 
Cu Kct X-radiation from a polycrystalline sample of 
copper in the normal Bragg-Brentano X-ray reflection 
geometry, representing the primary scattering as a fi- 
nite sum of sharp reflections. The conditions assumed 

* Present address, Union Carbide Corp., Cleveland, Ohio, 
U.S.A. 

in either of these two calculations would not appear 
to be applicable to liquid or amorphous specimens. 
With such materials Ix(O) is not isotropic nor does it 
consist of a few sharp reflections. In addition, if ab- 
sorption in the sample is low, and if the incident and 
detected beams are restricted (as they are by slits or 
monochromators) the geometrical conditions may be 
abnormal. 

In this paper we present the results of more general 
Monto Carlo calculations. The quantitative effects on 
the double scattering of variations in the primary scat- 
tering distribution, the absorption coefficient, the scat- 
tering power of the atoms, the specimen thickness, the 
monochromator configuration and of polarization cor- 
rections are shown. We consider only the double scat- 
tering of X-rays from the 'surface' of a flat sample 
large enough to intercept the entire beam, with source 
and detector situated symmetrically with respect to the 
surface normal. 
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Analysis 

The path of a detected ray which is scattered twice in 
a fiat sample of constant thicknes3, t, but of effectively 
infinite extent in the x and y directions is shown in 
Fig. 1. The incident and emergent rays are constrained 
to lie in parallel planes which are normal to the spe- 
cimen surface, and both rays are at the angle 0 with 
respect to the specimen surface. These conditions imply 
that angular divergences in both the incident and de- 
tected beams are ignored. The first scattering, by angle 
~l, occurs in volume element dvl a distance ll from the 
point of entry; the second scattering, by angle ~2, 
occurs in volume element dv2, a distance 12 from the 
first scattering point; the ray emerges at point xo,Yo, 
a distance 13 from the second scattering point. 

The differential of the absolute twice diffracted inten- 
sity, 6[I~(0)], from the volumes dvl and dv2 is 

0[1~(0)] = IoKEI~(~t/2)II(~z/2)P(~b~E,O, OM) 

exp(--p/,) exp(--p/2) exp(-p/3)  dvldV2 (1) X 
(12)2R 2 

where: 

Io = incident beam intensity 
K= o~ e4/m2c 4 
0 = density (atoms cm -3) 
P(~l,~2,0,Og)=polarization factor (see Appendix); 

0M is the monochromator Bragg diffraction angle. 

R = radius of receiving surface 
/z = linear absorption coefficient 
/1 =pr imary scattering intensity (electron units per 

atom; see below). 

The relationship between absolute units and electron 
units per atom (eu.a-1), which are usually more con- 
venient to use, is: 

Ia(O)=I(O)IoAG(O)KP(O)/2ltR 2 , (2) 

where 
Ia(O) = intensity in absolute units 
I(0) =intensity in eu.a -1 
A = area of incident beam 
G(O) =factor  to correct for the finite sample thick- 

ness or the limitations of the diffraction geometry. 

P(O) =single scattering polarization factor (see Ap- 
pendix). 

The twice-scattered intensity is obtained by inte- 
grating over the entire irradiated volume and alang 
the path 13 and averaging over the surface area as seen 
by the detector. In electron units, 

I 2 ( 0 ) -  2K/z ! tlsin° 

irradiated 
volume 

dxldyldzxl({d2)I({2/2) P(~1,~2,0,03¢) 
exp(-/all)  e x p ( -  U/2) 

(6) 2 )averaged (3)  
over xo Yo 

where t is the thickness of the sample. 
The direct analytical solution of the sixfold integral 

in equation (3) is possible only for severely restrictive 
conditions. Numerical integration is feasible, in prin- 
ciple, with a high speed computer, but difficulties re- 
garding the choice of an appropriate mesh and the 
specification of the integration boundaries in all but 
the simplest cases make such a procedure disadvan- 
tageous. Our evaluation of equation (3) is based on 
the fact that the value of any integral is equal to the 
average value of the integrand in the volume of inte- 
gration, multiplied by the volume: 

I Udv= Vo(U)vo. 

The average value of the integrand 

I(~,/2)I(~2/2)P(~l,{2,0,OM) 
X exp( - /d l )  exp(- /d2)  exp(-ld3)/(12) 2 (4) 

t 

/ ••o_,Yo ~ I n c i d e n t  ray  

- . 

~z~\ / 
" [ ~ ' - - ~ z  1/14' Y~z . x 

~lhv dv I " - ~  

/ 

Fig. 1. Double scattering geometry, in three dimensions. 
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is computed with a statistically meaningful number of 
sets of random values of the variables of integration. 
(In the computer calculations it is actually most con- 
venient to use O,13,xo,Yo and the location of the first 
scattering volume, xl,y~,zl as the independent vari- 
ables). This average, multiplied by the numerical factor 
2KIzVo/IoAG, is the magnitude of the twice scattered 
radiation. 

Such a procedure is directly analogous to the random 
nature of the scattering process itself, and the precision 
of the result is limited only by the number of samples 
included. In order to enhance the convergence, we have 
used a number of standard Monte Carlo devices, such 
as Russian roulette, weighted sampling, and analytical 
averaging (Meyer, 1956). For all the results presented 
here, for example, the variables 13 and zl have been 
preferentially weighted towards values that make the 
largest contributions to the intensity. The values for 
these variables have been based on the square of a 
random number (between 0.0 and 1.0) rather than on 
the random number itself, and the resulting contribu- 
tion to the intensity has been divided by the relative 
probability of the occurrence of those particular values. 
For most geometries, weighted sampling could be uti- 
lized for other variables as well. The most significant 
improvement in the calculation speed, however, is ob- 
tained by replacing the term 

exp(--/Zll) exp(-lzlz) exp(-ld3)/(12) z (5) 

by an analytical average whenever 12 is less than a 
particular small value, Rm. Term (5) is replaced by 
C exp(-2/d3), where C is the value of [exp(-/z[ll-13]) 
exp(-ld2)]/(12) 2, averaged over a small sphere of radius 
Rm, centered at the second scattering volume: 

c = -a-[-~ de dO 
$rCRm o 

rZsin 0 exp ( - r (1  - c o s  0/sin 0)} dr (6) 
r2 

0, cp and r describe the position of the first scattering 
volume, relative to the second. The integral can be 
expressed by the series: 

o o  C -  3 sin 0 X [ (1 -c sc0 )~ - (1  +csc O)n](-ltRm) n . 
2 R~/~ n=l n .n !  

(7) 
The error caused by the approximation of this sub- 
stitution is slight as long as Rm is chosen to be signi- 
ficantly less than an absorption length (1//~). For most 
of the results presented here the substitution was made 
whenever/2 was less than 1/10/t, which causes a negli- 
gible error. ( A less conservative value could have been 
used, since Rm=½lz allows an additional tenfold reduc- 
tion in computation time, with an error of less than 
4~) .  

The double scattering values presented, in the next 
section, each represent 30,000 to 100,000 random 
choices of variables and are estimated to be within 
+ 5 ~  of the exact values. This significance required 

1 to 2 minutes for each value of 0 (10--20 minutes for 
each curve of 10 points) on the M.I.T. Computation 
Center IBM 7094 computer. 

Resul t s  

An I~(0) may be defined, which is independent of the 
average scatteriag power and of the absorption coef- 
ficient, and for which dimensions may be expressed 
relative to the linear absorption coefficient: 

12(0)= I2(O)11m~c4fi72Qe4= 12(O)11oW/O.O48cr 2 , (8) 
where 

/t o =mass  absorption coefficient 

S o'= 2re I1(20) sin 20d(20) 
0 

W-- atomic weight. 

Our calculations show that I~(O) is of the order of 0-02 
for all of the conditions considered. Therefore, the 
average level of the multiple scattering depends pri- 
marily on the properties o', W and/~o" The actual dis- 
tribution, however, is affected by the primary scattering 
and by other details of the experiment. 

The constant o-, which is a measure of the total 
scattering cross section, varies with atomic.number, Z, 
the wavelength of the radiation and the shape of I1(0). 
Fig.2 shows the variation for Z = 5  through 30 with 
both Cu Ks and Mo K0c radiations and 11(0)=if*. o- is 
roughly proportional to Z 2, except in the neighborhood 
of absorption edges. Structure-dependent diffraction 
effects in liquid and amorphous materials alter I~(O) 
and may thereby modify o by 10-20%, so the values 
in Fig. 2 should not be used indiscriminately. 

In Fig. 3 we compare the results of Vineyard's ana- 
lytical calculation with a Monte Carlo analysis which 
simulates Vineyard's conditions of infinite boundaries, 
isotropic primary scattering and no polarization ef- 
fects. In X-ray experiments the measured intensity is 

4.0 

3.0 

2.0 

o I I I I i I I I 
I0 20 30 40 

Z (atomic number) 

Fig. 2. Variation of the total scattering cross-section per atom 
with atomic number and X-ray wavelength. 
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usually converted to electron units (or some multiple 
thereof) by dividing the measured values by the po- 
larization function appropriate to single scattering. In 
Fig.3 we also show the effect of the true polarization 
on Ij(O) (with no monochromators) and the extent to 
which the normal polarization correction accounts for 
the polarization effect. The overall result of polariza- 
tion effects in the scattering processes, combined with 
the normal 'correction', is to reduce the multiple scat- 
tering by about 30Yd. In each of the subsequent figures, 
I'2(0), has been divided by the appropriate single scat- 
tering X-ray polarization correction, since that is the 
form in which data are normally examined. 

Warren's polycrystalline calculation for copper is at 
the extreme opposite from the assumption of isotropic 
scatters. In Fig. 4 we compare that result with a Monte 
Carlo calculation with 11(0) equal t o f  2 + Icompton modified 
(to match Warren's values). The peaks in Warren's 
result, in particular the peak at the origin, are due to 
the presence of the sharp, intense peaks in the crystal- 
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Fig. 3. Double scattering with isotropic primary scattering. 
Effects of polarization and standard polarization correction. 
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Fig.4. Comparison of double scattering with discrete peak 
and independent primary scattering (copper with Cu Ke 
radiation). 

line 11(0). Beyond 20=20 ° , however, the independent 
scattering result is remarkably similar. In Fig. 5, three 
1"2(0) are shown, which have been calculated for (a) 
independent scattering (I1(0)=ff*) and [(b) and (c)] for 
two pseudo-liquid primary scattering functions, both 
based on the same scattering factors. 

These comparisons show that the multiple scattering 
is affected very little by the details in the primary scat- 
tering as long as 11(0) represents a reasonable sampling 
of ff*. Therefore, Vineyard's 'isotropic' calculation 
should be a good approximation even for polycrystal- 
line samples with neutron radiation, except at low 
angles, as has been demonstrated experimentally (Blech 
& Averbach, 1965). 

Calculations have also been made to investigate the 
effect of such systematic variations in 11(0) as arise 
from the variation offf*/a with Z and the changes in 
shape encountered with different values of X-ray wave- 
length for a given Z. The results of these calculations 
are shown in Figs. 6 and 7. One finds that for 20 less 
than 90 ° , 1"2(0) follows the trends in 11(0) while in the 
high angle region 1"2(0) is practically independent of 
the shape of the primary scattering. Finally, in Figs. 8 
and 9, we illustrate the effects of monochromators, 
finite sample thickness and finite diffraction geometry. 
With the latter two of these, the measured single scat- 
tered intensity requires corrections (Milberg, 1958) in 

I I I I _  

0 . 5  t-- b ~ o" o = 2859 

0"41-- IIC °'b =2725 
/ I I  °'c : 2388 

b °31- I I  
o 

0.2 

0"10 

0.03 

0.02 ]- 

0'01 F ~ -'~ 

sin 0 

Fig. 5. Comparison of double scattering with three different 
primary scattering distributions. (a) Independent scattering. 
(b) and (c) Pseudo-liquids. 
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addition to the polarization function, and these have 
also been applied to 1"1(0). The sample thickness has t.2 
little effect on l"z(O), but restrictive geometry (0.5/# 
incident beam width, 1.5//z receiver acceptance) reduces I.o 
the double scattering appreciably. The effect of mono- b o.8 
chromators, which is to reduce the double scattering, *" ~- 0.6 
as illustrated in Fig. 9, is due to the depolarization of 
the beam by the multiple scattering processes. The o.4 
latter calculations apply to Cu Kc~ radiation and LiF o.z 
monochromators, o 

D i s c u s s i o n  

The mathematical technique employed for these calcu- 
lations is not limited to X-ray diffraction or to the 
particular sample configuration which we have discus- 
sed. The method is quite generally applicable, provided 
that one is not interested in the low angle region when 
sharp, intense reflections are present (Warren, 1959b). 

From the data presented here it should be possible 
to estimate the magnitude and shape of the multiple 
scattering for any experiment with a geometry com- 
parable to that which we have considered. In this re- 
gard, it should be noted, in considering the shape of 
11(0) and the value of 0 .2 , that the incoherent contribu- 
tion to the primary scattering may not be negligible 
for the lighter elements, if it is not eliminated experi- 
mentally. As a general rule-of-thumb, I2(0)eua-1 is less 
than 0.005 0.2/].,loW and is likely to be of the order of 
O'O010.2/flo W. 

This work was sponsored in part by the Office of 
Naval Research, under Contract Nonr-1841(48). All 
of the computer calculations were done at the M.I.T. 
Computation Center. We also appreciate the continu- 
ing interest and advice of Professor B. L. Averbach. 

APPENDIX 

Polarization factors 
The polarization factor for single scattering, in the 

absence of crystal monochromators, with initially un- 
polarized radiation is (James, 1962): 

1 + cos220 
P ( 0 ) =  2 (A1) 

With, respectively, one and two (identical) crystal 
monochromators in the diffractometer system, the po- 
larization factors for single scattering are (Cullity, 
1956): 

1 + COS220 cosZ20M 
P(O)-  2 (A2) 

and 1 + COS220 COS42OM 
P(0)- -  2 ' (A3) 

Warren (1959a) has given the polarization factor for 
double diffraction without monochromators: 

P(~1,¢2,0) ~--- [C0S2¢I Jr COS2¢2 -']- 

+(COS 2 0 - c o s  (1 cos ~2)2]/2. (A4) 
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Fig. 6. Variation of double scattering with atomic number of 
scatterer. 
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Fig. 7. Variation of double scattering with X-ray wavelength. 
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The calculation may be extended to a diffraction geo- 
metry which includes monochromators in the incident 
and/or diffracted beams. The spherical triangle formed 
by the angles ~1, ~2, and 20 in Fig. 10 is a helpful con- 
struction for this purpose. The three angles and the 
diffraction geometry at the specimen have been defined 

0.03 

I I 

x t=oo 

o t = l / F  

[] Finite rece ive r  

I I 

H °J 0 . 0 2 -  t - ' - - - u " " ~ X ~ x  - 
/ ° ~ o ~ ,  x 
~O~O ~o~ 

, /  n o.ol 

o I 
0.2 0,4 0.6 0.8 1,0 

sin O 

Fig. 8. The effects of finite thickness (t = 1~It) and finite geometry 
(incident beam width = 0.5/It, receiver acceptance= 1.5/It). 
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Fig. 9. The effects of monochromators (LiF crystals and Cu Kc~ 
radiation). 

in the previous text with respect to Fig. 1. The mono- 
chromators operate in planes parallel to the 'plane'  of 
diffraction at the specimen. 

The spherical triangle, on a sphere much larger than 
the specimen, is defined by points X, Y , Z  which are 
respectively the points at which the incident, once- 
diffracted and twice-diffracted rays would emerge from 
the sphere. The angles of the triangle may be expressed 
in terms of the diffraction angles: 

cos ~2-cos  20 cos ~1 
cos ¢ = sin 20 sin ~l 

cos 2 0 - c o s  ~a cos ~2 
cos Z = sin ~1 sin ~2 

cos ~1-  cos 20 cos ~2 
cos 7 = sin 20 sin ~2 (A5) 

With an unpolarized source the relative components 
of the electric vectors of the radiation after the dif- 
fraction at the first monochromator  are 

E l =  l /1/2 

E,, = Q/112 (A6) 

where E± and E, are perpendicular and parallel, re- 
spectively, to the plane of diffraction of the mono- 
chromator and Q = cos 20M. 

After the first diffraction in the sample 

E±= I/Q2 + cos2¢(1 _Q2)/ I /2  

E,, =cos  ~1 l/1 + cos2¢(O 2 - 1 ) / 1 1 2 ,  (A7) 

where the direction subscripts now refer to the first 
diffraction plane, i.e. the plane defined by 11 and /2. 

After the second diffraction in the sample 

E l =  {cos2z[Q 2 q- cos2(p(1 - Q2)] 

+ sin2z c0s2~1[1 +cos2¢(Q 2-1)]}{/I/2 

E, = cos ~2{sin2z[Q 2 + c0s2¢(1 - Q2)] 
+cos2x c0s2~1[1 +cosZ¢(Q 2-1)]}÷/112, (A8) 

where the direction subscripts refer to the second dif- 
fraction plane, i.e. that defined by 12 and 13. The po- 

MONOCHROMATOR MONOCHROMATOR 

TOR 

[ ~ ISPE(~iMFNI/" 2 28 

Fig. 10. Construction for the calculation of polarization factors. 
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larization factor for double diffraction with one mono-  
chromator  is therefore: 

P(~I,~2,0,OM) = {Q(cos2z + sin2z c0s2~2) 

+ cosE~l(sin2 Z + cosEx c0s2~2) 

+ (1 -- Q)cosE~o(cosEz sin2z c0s2~1 - sin2z c0s2~2 

- cos2z c0s2~1 c0s2~2))/2. (.49) 

Including the effect of the second monochromator  
yields: 

P(~l,~2,0,OM)=[O{cos2r cos2z + sin27 sin2z c0s2~2} 
+ B[cos2y sin2,z c0s2~1 + sin2y cos2x cos2~l c0s2(2] 

+ Q(D[sin27 cos2z+cos27 sin2z c0s2~2] 

+ B[sin27 sin2x cos2~l + cos2z c0s27 c0s2~1 c0s2~2])]/2 

( a l 0 )  

where: 
D = Q + (1 - Q)cos2~o 
B = 1 - (1 - Q)cos29~. 
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Theory of X-Ray Ditfraetion In Crystals With Stacking Faults 
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X-ray diffraction in a crystal with stacking disorder is studied theoretically. It is assumed that the layers 
are identical and equidistant. If a2 is the stacking direction, diffraction occurs when the scattering vector 
s satisfies the condition s = 2n[H~bl +yb2 + H3b3], where Hi, Ha are integers, but y may have any value. 
As to intensity of scattering, the observable quantity is the integrated intensity PH1Na(Y), and the de- 
tailed expression for this function is deduced. For an ordered crystal the integrated intensity is invariant 
under the symmetry operations of the crystal as applied to the indices H1H2H3, but this is not true 
in general of PHl n3(Y). Thus Pnl n3(Y):# PnlH3(--Y) when b2 is the normal to a mirror plane. It is shown 
how the precise nature of the stacking disorder can be deduced by means of a detailed analysis of the 
experimental curves PHI~3(Y). 

Introduction 

A structure study of  a single crystal of fl-Ca(BO2)2 was 
recently begun by the writer. The crystal is ortho- 
rhombic  with periods al = 8.369 + 0.001, a2= 13.816 + 
0.001, a3=5 .007_0 .001  A;  but  the X-ray diffraction 
patterns are unusual. Diffraction occurs for integral 
values of the Miller indices/-/1 and/-/3,  and when H3 
is even also for integral values o f / / 2 .  However, dif- 
fraction takes place for any value y of the second index 
w h e n / / 3  is odd. In other words, the diffraction condi- 
tions are those of  a three-dimensional lattice i f / / 3  is 
even, those of a two-dimensional lattice if H3 is odd. 
The diffraction vectors s are thus of the form 

/-/3 even: s = 2rC[Hlbl + H2b2 + n3b3] 
H3 odd: s = 2n[Hlbl +yb2 + n3b3] (1) 

where y may have any value. 

Extensive integrated intensity measurements have 
been made for zones [HlyH3] with H3 odd, using both  
Cu Kct radiation with a 'normal  beam'  counter  spec- 
t rometer  and Mo K~ radiation with a 'goniostat '  spec- 
trometer.  As an illustration Table 1 shows the meas- 
ured values of the integrated intensity P~IH3(Y) for 
the reciprocal lattice row [2yl] at intervals of 0.1 for 
y over the range - 9 < y  < + 9. Intensity maxima occur 
at integral and half-integral values of  y, but about  
eighty per cent of the scattering is in the background 
between the maxima. The most remarkable feature of  
Table 1 is the experimental fact that  the integrated 
intensities PHIH3(Y) and P~qn3(f)  are different. The 
symmetry of the crystal being centrosymmetric ortho- 
rhombic,  one has IFHIH3(Y)I=IFH1H3(P)I, and it is, 
therefore, startling to find that  the integrated intensity 
is not invariant under the symmetry operations of  the 
crystal. 


